
Cloud Computing is NP-Complete

Working Paper, February 21, 2011

Joe Weinman1

Permalink: http://www.JoeWeinman.com/Resources/Joe_Weinman_Cloud_Computing_Is_NP-Complete.pdf

Abstract

Cloud computing is a rapidly emerging paradigm for computing, whereby servers, storage,

content, applications or other services are provided to customers over a network, typically on an

on-demand, pay-per-use basis. Cloud computing can complement, or in some cases replace,

traditional approaches, e.g., owned resources such as servers in enterprise data centers.

Such an approach may be considered as the computing equivalent of renting a hotel room

rather than owning a house, or using a taxi or rental car rather than owning a vehicle. One

requirement in such an approach is to determine which resources should be allocated to which

customers as their demand varies, especially since customers may be geographically

dispersed, cloud computing resources may be dispersed, and since distance may matter due to

application response time constraints, which are impacted by network latency.

In the field of computational complexity, one measure of the difficulty of a problem is whether it

is NP-complete (Non-deterministic Polynomial-time complete). Briefly, such a designation

signifies that: 1) a guess at a solution may be verified in polynomial time; 2) the time to solve the

problem is believed to grow so rapidly as the problem size grows as to make exact answers

impossible to determine in meaningful time using today’s computing approaches; 3) the problem

is one of a set of such problems that are roughly equivalent to each other in that any member of

the set may be transformed into any other member of the set in polynomial time, and solving the

transformed problem would mean solving the untransformed one.

We show that an abstract formulation of resource assignment in a distributed cloud computing

environment, which we term the CLOUD COMPUTING demand satisfiability problem, is NP-

complete, using transformations from the PARTITION problem and 3-SATISFIABILITY, two of

the “core” NP-complete problems. Specifically, let there be a set of customers, each with a

given level of demand for resources, and a set of servers, each with a given level of capacity,

where each customer may be served by two or more of the servers. The general problem of

determining whether there is an assignment of customers to servers such that each customer’s

demand may be satisfied by available resources is NP-complete.

The impact on Cloudonomics is that even if resources are available to meet demand, correctly

matching a set of demands with a set of resources may be too complex to solve in useful time.

1
 Joe Weinman leads Communications, Media and Entertainment Industry Solutions for Hewlett-Packard. The

views expressed herein are his own. Contact information is at http://www.joeweinman.com/contact.htm
...............

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 2

1. Introduction

There are a number of definitions of cloud computing. At a high level, however, we can imagine

a group of customers interacting with a set of servers on a globally ubiquitous basis over a

network. We use the term “server” as simplified shorthand for “data center,” “service center,”

“service node,” “resource cluster,” and the like. In some cases these customers may be

individuals, using services such as search, web mail, or social networking services, or they may

be viewed as enterprises, procuring services such as computing resources on a pay-per-use,

on-demand basis.

FIGURE 1: A Global Cloud Computing Environment

To deliver services and resources on demand over a network requires solving numerous

technological problems, including automated provisioning, dynamic virtual server migration,

network security, and so forth. However, the problem we focus on in this paper is a deceptively

simple one: matching demand for resources arising from customers with resource capacity

available at the servers. We can create a simple model that looks like this, showing that each

customer has some level of demand , and each server has some level of resources

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 3

d3=30

r1=70 r2=70

d4=20

d5=50

d1=40 d2=50

r3=50

FIGURE 2: Cloud Computing with Quantified Demand and Resources

Also, we may want to address the fact that not all servers may be available to all customers,

due to reasons such as network latency, commercial agreements, or security. We can indicate

that a customer may be served by a server using a directed edge, as shown below.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 4

d3=30

r1=70 r2=70

d4=20

d5=50

d1=40 d2=50

r3=50

s1 s2

s3

c1
c2

c5

c3

c4

FIGURE 3: Demand, Resources, and Connectivity

Finally, we may abstract the problem as a bipartite graph of servers and customers , with

resource requirements or demand and resource availability , as shown:

d3=30

r1=70 r2=70

d4=20

d5=50

d1=40
d2=50

r3=50

= Resources = Demand

s1 s2

s3

c1
c2

c5

c3

c4

FIGURE 4: A Cloud Computing Graph with Customers Connected To Servers

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 5

We can formalize these notions as follows:

Customers and Resource Demand: Let be a finite set of customers, i.e.,

 Let = be a set of finite positive demands, where each

customer has demand . Elsewhere2, I have treated each customer’s demand as a function

of time, e.g., etc., but here we will just treat each demand as a constant, which

we can interpret as non-varying demand or an instantaneous snapshot of variable demand.

Generally, we can view each customer’s demand as being multi-dimensional, for example,

customer may need processing cores, gigabytes of memory, and gigabytes of storage,

but for the purposes of this paper we will treat the demand as one-dimensional.

Servers and Resource Capacity: Demand is served by distributed servers .

Let be finite positive resources, where each server has a quantity of

resources . As with demand, generally speaking, we could consider the quantity of resources

as varying over time, e.g., etc., and being multi-dimensional. However, here we will

treat the resources as constant and one-dimensional.

In this paper, we will assume that demand from any customer must either be served in its

entirety by a specific server, or not at all. This is a reasonable assumption, as applications often

require a closely coupled set of components that must be physically co-located due to

performance reasons.

We would like to understand whether there are sufficient resources to service the demand. If all

the customers and servers3 are in a single location, e.g., a single data center, then this problem

is easy to solve. We just need to know whether

 , that is, whether the total

quantity of demand is less than or equal to the total quantity of resources

And, if latency were not an issue and bandwidth were free, then even if customers and servers

were in widely scattered locations, we would be fine with the same constraint.

However, in the case of cloud computing, we can assume that location does matter. To a

customer, a cloud computing service or resources appear to be ubiquitous and thus location-

independent: after all, a service that could only be accessed from, say, 1234 Main Street in

Topeka would not typically be considered “cloud computing.” However, this is because behind

the scenes there is sufficient available capacity “nearby” enough to meet latency constraints at a

manageable level of cost. And, there may be additional constraints whereby not all servers will

be suitable for all customers, such as country privacy compliance, secure subnetworks, or other

constraints. This implies that servers and customers are less than fully connected.

Consequently, we consider and not just as sets, but as members of a bipartite acyclic

directed graph , , such that | . In other words,

2
 Joe Weinman, “Time is Money: The Value of ‘On-Demand’,”

http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
3
 We use the terms “customers” and “servers” because “client-server” has other connotations.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 6

every customer has one or more, but not necessarily all, servers with resources that can

potentially service its demand.

If for each customer there is exactly only one potential server, i.e., the conditions are as

described above and , then the problem is again easy to solve, since customers and

servers partition themselves into disjoint subgraphs , and we merely need to meet the

condition that for each such subset , given that .

Such a circumstance historically occurred in a traditional enterprise glass house data center

environment where each employee’s terminal could only access services or resources within a

nearby corporate data center, rather than say, a remote data center, a public cloud or a different

enterprise’s data center. In such a case, customers and servers partition themselves into

multiple “star” clusters, with a server at the center of the star and customers at the points of the

star.

Also, if there is more than sufficient capacity at each center to handle workloads, then any

assignment of customers to resources is likely to work. However, such ubiquitous excess

capacity is economically inefficient.

The problem becomes interesting, and surprisingly complex, when each customer can access

resources at two or more servers, and there is sufficient, but not excessive, aggregate capacity.

As we will show, this problem is NP-complete, that is, unlikely to be solvable in an amount of

time that is a polynomial function of and . However, a potential solution generated at

random may be verified in polynomial time, and this problem may be “transformed” or “reduced”

into a set of other computationally complex equivalent problems that have been extensively

studied, in the same way that the problem of “getting to work” may be reduced to the problem of

“remembering where you left the car keys.”

The classic text in the field of computational complexity is Computers and Intractability,

authored by Michael R. Garey and David S. Johnson4, then members of the technical staff at

the Mathematics Research Center of Bell Labs. We will refer to this book throughout this paper.

The canonical NP-complete problem is SATISFIABILITY, wherein it is desired to be known

whether there exists at least one assignment of or to each variable in a set of

Boolean variables such that a Boolean expression—which may be structured as the conjunction

(“and”-ing) of a set of disjunctive (“or”-ing) clauses—can be satisfied, i.e., can be made to

equate to . For example, the expression “(or) and (not or)” can be satisfied in

several ways, including by setting to and to . While this was easy to solve, the

general problem, when each clause has three or more Boolean variables, is NP-complete.

In a similar vein, the CLOUD COMPUTING5 demand satisfiability problem may be expressed as

the problem of whether there exists at least one assignment of customers to servers such that

4
 Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman and Co., San Francisco, 1979.
5
 We use “CLOUD COMPUTING” to refer to the abstract problem, and “Cloud Computing” to refer to the industry.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 7

the aggregate demand from each customer assigned to a server can be satisfied, i.e., can be

resourced, by the capacity at that server.

Let customers have demand = respectively, and let servers

 have resources } respectively. Let be a bipartitite

graph where an edge signifies that some or all of capacity may be used to serve

demand .

With this in mind, we can state the CLOUD COMPUTING problem as deciding whether there is

an assignment , that is, a subset of the set of edges , where such that

1) Given any customer there exists exactly one server such that the edge .

2) The sum of the demand
 arising from the customers served by server is less than

or equal to its capacity, i.e., we have

In the example instance we have been using, one such assignment is shown below.

d3=30

r1=70 r2=70

d4=20

d5=50

d1=40 d2=50

r3=50

s1 s2

s3

c1
c2

c5

c3

c4

Figure 5: An Assignment of Customers to Servers Satisfying Demand

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 8

2. The PARTITION Problem

Garey and Johnson define the PARTITION problem, originally listed in Karp6, as this: given a

finite set and a “size,” or “weight”7 associated with each element of , i.e., for

each is there a subset such that ?

We can think of and as a partition of into two disjoint sets and , where

 and . For example, if the weights of the elements of are of sizes

 and , then may be partitioned into and such that the weights of the

elements of are and and the weights of the elements of are and since then

 . These kinds of problems show up often in the real world, for

example, how can we choose players for two teams so that they have “equal” talent and thus

make the game interesting, or how can we divide furniture among two moving vans so that

neither exceeds highway weight restrictions.

Note that while the “elements” of are unique, and thus is a set, the weights don’t need to be.

However, if there are two elements with the same size, say, , we can assign one of the

elements to the first set and the other to the second one and we have simplified the problem.

Garey and Johnson refer to PARTITION as one of the 6 “basic core” NP-complete problems,

together with Boolean 3-SATISFIABILITY, 3-DIMENSIONAL MATCHING, VERTEX COVER,

CLIQUE, and HAMILTONIAN CIRCUIT. We will show that an instance of the PARTITION

problem can be transformed in polynomial time to an instance of the CLOUD COMPUTING

problem.

Proposition 1: PARTITION is NP-complete.

Proof: See Garey and Johnson, pp. 60-62, for the proof, which is based on a

transformation from 3-DIMENSIONAL MATCHING.

3. CLOUD COMPUTING Demand Satisfiability is NP-Complete

The proof is a formalization of the insight that the CLOUD COMPUTING problem is equivalent

to the PARTITION problem. Using the example of and above, we can think of that

instance of PARTITION as corresponding to the following CLOUD COMPUTING graph:

6
 Richard M. Karp, “Reducibility Among Combinatorial Problems,” 1972, at

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
7
 We slightly change notation to use weight rather than size to prevent confusion with servers in the

present exposition.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 9

r1=15

r2=15

s1

s2

d1=1c1 d2=2c2 d3=3c1 d4=4c1 d5=5c1 d7=7c1 d8=8c1

Figure 6: A Transformation of an Instance of PARTITION to CLOUD COMPUTING

And an assignment which satisfies this instance is

r1=15

r2=15

s1

s2

d1=1c1 d2=2c2 d3=3c1 d4=4c1 d5=5c1 d7=7c1 d8=8c1

Figure 7: A Solution to an Instance of PARTITION via CLOUD COMPUTING

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 10

For a formal proof that CLOUD COMPUTING is NP-complete, we need to show that

1) CLOUD COMPUTING is

2) There is a transformation of any instance of a known NP-complete problem, in this case,

PARTITION, into an instance of CLOUD COMPUTING that is satisfiable if and only if

there is a solution to the original instance of PARTITION

3) This transformation from PARTITION to CLOUD COMPUTING can be done in

polynomial time

We now show this.

Proposition 2: CLOUD COMPUTING is NP-complete.

Proof: Clearly, CLOUD COMPUTING is in NP. If we guess a solution to the problem, we

can validate in time that is a polynomial function of and that the sum of each of the

customer demands served by each server is within its quantity of resources, i.e., that

We now transform PARTITION into CLOUD COMPUTING. Let the instance of PARTITION

be a finite set and a weight associated with each

 . We want to know if there is a partition of into two disjoint subsets , where

 and , such that

We construct a CLOUD COMPUTING instance as follows. Let comprise

 customers , and let comprise the corresponding demands ,

where each is set to . Let comprise two servers, and . Let

 Finally, let .

It is clear that such a transformation can be performed in polynomial time, proportional to

to construct and , proportional to a constant to construct and proportional to to

determine the values of and thus , and proportional to to construct .

Finally, we note that an instance of CLOUD COMPUTING so constructed has an

assignment that satisfies the demand if and only if the corresponding PARTITION problem

has a solution. If there is a solution of PARTITION, where , then we let but

 . Since the sum of the weights

 we know that there is

sufficient capacity at server to handle the demand
 , and vice versa, and the same

holds for capacity at server to handle the demand
 . The converse is also true, since

if there is an assignment that satisfies the resource constraints at both and , and since

the demand is indivisible, we have also found a suitable solution to the original PARTITION

problem.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 11

4. 3-SATISFIABILITY

It will be noted that in the proof above, the topology, i.e., connectivity, of the Cloud Computing

graph did not enter into the complexity of the solution in a major way. In a way, this is very

powerful, as it shows that there is a fundamentally challenging problem at the heart of CLOUD

COMPUTING. However, it is “unsatisfying” (no pun intended) in a way, as real-world

considerations of proximity and latency really weren’t used that would constrain connections

and thereby potentially define a less than fully connected graph. Also, there are what one might

term “philosophical” issues with the use of PARTITION, as Garey and Johnson discuss on pp.

90-92 in a discussion regarding “strong” NP-completeness, in that part of the difficulty in solving

PARTITION problems is that very large input numbers may be used, and one may need to

consider how efficiently those numbers may be encoded in determining the complexity of the

problem. In the construction of the prior proof, all customers were connected to all (i.e., both)

servers. In a second proof in the next section, the actual topology of the graph plays a major

role in encoding the logic of the underlying complexity. There are “truth-setting” components,

“satisfaction-testing” components, each with local behavior, and “communications links” that

create a global topology mirroring some of the trade-offs found in the real world. For example, if

one runs a large job at a computing center that is nearby, it may then displace another job to a

different location, which may then create a domino effect of sorts.

We first refresh the reader’s memory regarding the “mother” of all NP-complete problems, 3-

SATISFIABILITY:

Let be a set of Boolean disjunctive clauses on a finite set of

Boolean variables, such that | |=3 for is satisfiable if there is an assignment

 such that each is satisfied, i.e., has at least one term that is .

Proposition 3: 3-SATISFIABILITY is NP-complete.

Proof: See Garey and Johnson, pp. 48-50, for a proof via a transformation from

SATISFIABILITY.

5. CLOUD COMPUTING Demand Satisfiability is NP-Complete,

Redux

We again show that CLOUD COMPUTING is NP-complete, this time via a transformation from

3-SATISFIABILITY. This proof primarily uses truth-setting components and satisfaction-testing

components, and is conceptually related to the proof of the NP-completeness of the VERTEX

COVER problem described in Garey and Johnson.

We use the example below to help illustrate the construction.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 12

T

s1

c1

F

u1

2

1

11

9

9

9

T F

u2 9

9

9

T F

u3 9

9

9

T F

u4 9

9

9

2

1

11 2

1

11

c2 c3 c4

c5

c6

c7 c8 c10 c11 c13

c9 c12

s2 s3 s4 s5 s6 s7 s8

s9 s10 s11

Truth-Setting Components

Satisfaction-Testing Components

Figure 8: A Transformation of an Instance of 3-SATISFIABILITY to CLOUD COMPUTING

This example CLOUD COMPUTING instance is a transformation from an instance of 3-

SATISFIABILITY corresponding to four Boolean variables and

 or equivalently,

 .

As can be seen, on the top row are “truth-setting” components, e.g. the cluster . On

the bottom row are “satisfaction-testing” components, e.g., the cluster

The demand from customer can either be met by server or server . However,

once that demand is met, whichever server has served it is now out of resources. The remaining

server, however, has enough resources to serve as many customers on the bottom row as it is

connected to. For example, if demand from is met by , then cannot also serve ,

however, will still be able to meet the demand from . Conversely, if demand from is met

by , then cannot also serve . However, will have sufficient capacity to meet the

demand from .

Turning to the satisfaction-testing components, consider the cluster on the lower

left. Server has resources . Consequently, it has sufficient capacity to service

demands arising from any zero, one, or two—but not all three—of , , and .

Therefore, for demands , , and at least one must, but potentially two or three can get

served from one of the servers in the truth-setting row. The equivalence with 3-

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 13

SATISFIABILITY is clear. At least one Boolean term in each clause must be served via the

truth-setting servers, and as many as three may be. However, the truth-setting components are

“forced” to make a decision as to a single value— or —for each Boolean variable.

There may be zero, one or more assignments that satisfy a Boolean expression. In this

example, one such assignment is and , or,

graphically:

T

s1

c1

F

u1

2

1

11

9

9

9

T F

u2 9

9

9

T F

u3 9

9

9

T F

u4 9

9

9

2

1

11 2

1

11

c2 c3 c4

c5

c6

c7 c8 c10 c11 c13

c9 c12

s2 s3 s4 s5 s6 s7 s8

s9 s10 s11

Truth-Setting Components

Satisfaction-Testing Components

Figure 9: A Solution to an Instance of 3-SATISFIABILITY via CLOUD COMPUTING

Note that demand from switches to is resourced by the “opposite” truth value, e.g., in the

assignment shown in Figure 9, being resourced by signifies that is set to , as any

literals in the clauses below may be now easily served by .

With this example in mind, we now turn to a second proof.

Proposition 4: CLOUD COMPUTING is NP-complete.

Proof: As in the proof of Proposition 1, CLOUD COMPUTING is clearly in NP. Given a

non-deterministic guess as to a solution, we can verify it in polynomial time. We now

show a transformation from 3-SATISFIABILITY.

Let be a set of Boolean disjunctive clauses on a finite set

 of Boolean variables, such that | for Construct an

instance of CLOUD COMPUTING as follows:

1) Create truth-setting switches , with demand

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 14

2) Create truth selections , each with resources

3) Create an edge from each to

4) Create an edge from each to

5) Create clause elements each with demand

6) Create clause gap-fillers , each with resources

7) Create an edge from each clause element to clause gap-filler

8) Create an edge from each clause element to clause gap-filler

9) Create an edge from each clause element to clause gap-filler

10) For the 1st, 2nd, and 3rd term in each clause in , do as follows: if the th term in

clause is , create an edge from to

11) For the 1st, 2nd, and 3rd term in each clause in , also do as follows: if the th term in

clause is , create an edge from to

This is a somewhat tedious way of describing the construction illustrated in the example.

We note that this transformation may be concluded in time that is a polynomial function

of and . Finally, we note that per the discussion and the construction there is an

assignment to that satisfies if and only if there is a satisfying

To see this, we note that due to the fact that demand from the switches ,

always is at a level of demand . Since for each switch , there is

only the ability to have demand served in total either by selections or , each also

with resources , the truth-setting cluster follows the rule that exactly one and

only one server per cluster will have resources available for use by the satisfaction-

testing components, and because resources are made available, even if every

cluster had every term set to be resourced by that selection, it would have sufficient

resources, since there are at most clauses with at most terms.

As an aside, this is where arises in the construction. In fact, if we restrict each

clause to at most one occurrence of a term, then we could set demands and resources

in the truth-setting components to just , or even create a custom number of resources

equal to the maximum number of occurrences of either or in the Boolean expression.

Cloud Computing is NP-Complete

© 2011 Joe Weinman. All Rights Reserved. Page 15

It is also clear that since each satisfaction-testing component has three customers each

with a demand for resource, but a “local” server only with resources, at least one

customer in each satisfaction-testing component must “look elsewhere” beyond the

satisfaction-testing component for a resource to be served. Consequently, at least one

customer (i.e., variable) in each clause must be “True.”

Conversely, from the construction, it is clear that if there is a solution to the instance of

3-SATISFIABILITY, there is a corresponding solution to the instance of CLOUD

COMPUTING. Given a truth assignment of or to variable , we set each

truth-setting component accordingly so that the “switch” customer gets its resources

from the selection customer corresponding to . This leaves sufficient resources in the

selection labeled with the same truth value as . Since there is a satisfying assignment

to the instance of 3-SATISFIABILITY, this means that each satisfaction-testing

component has at least one term that is satisfied, thus can find at least resource from

the truth-setting layer. Therefore, there are at most resources needed by the

satisfaction-testing component, which can be satisfied by the “gap-filling” server.

6. Discussion

This paper shows that computationally complex problems can arise under simple architectures

such as geographically dispersed resources accessed by geographically dispersed customers.

In the real world, there is usually likely to be sufficient capacity that most or all customers can be

served most or all of the time. However, as latency constraints cause demand to need to be

fulfilled by “nearby” servers, and user experience or business requirements reduce the ability of

those applications to be deferred to whenever resources may become available, this illustrates

the challenge of maintaining a cost-effective, minimal set of resources and routing (assigning)

customers to those resources for highly interactive workloads. Moreover, in the real world, such

a problem must be solved continuously, as servers become available or go off-line, and

customer demand levels shift.

Perhaps most interestingly, this brief analysis shows that even under simple assumptions

regarding demand and resources, computationally complex challenges can arise. My prior

papers in Cloudonomics have looked at issues such as the relative cost of on-demand

resources as well as the timeliness of resource provisioning and de-allocation. This paper

shows that, at least theoretically, the complexity of matching demand to resources in a

distributed, efficient environment can be an issue as well.

