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Abstract 

Cloud computing is a rapidly emerging paradigm for computing, whereby servers, storage, 

content, applications or other services are provided to customers over a network, typically on an 

on-demand, pay-per-use basis.  Cloud computing can complement, or in some cases replace, 

traditional approaches, e.g., owned resources such as servers in enterprise data centers. 

Such an approach may be considered as the computing equivalent of renting a hotel room 

rather than owning a house, or using a taxi or rental car rather than owning a vehicle.  One 

requirement in such an approach is to determine which resources should be allocated to which 

customers as their demand varies, especially since customers may be geographically 

dispersed, cloud computing resources may be dispersed, and since distance may matter due to 

application response time constraints, which are impacted by network latency. 

In the field of computational complexity, one measure of the difficulty of a problem is whether it 

is NP-complete (Non-deterministic Polynomial-time complete).  Briefly, such a designation 

signifies that: 1) a guess at a solution may be verified in polynomial time; 2) the time to solve the 

problem is believed to grow so rapidly as the problem size grows as to make exact answers 

impossible to determine in meaningful time using today’s computing approaches; 3) the problem 

is one of a set of such problems that are roughly equivalent to each other in that any member of 

the set may be transformed into any other member of the set in polynomial time, and solving the 

transformed problem would mean solving the untransformed one. 

We show that an abstract formulation of resource assignment in a distributed cloud computing 

environment, which we term the CLOUD COMPUTING demand satisfiability problem, is NP-

complete, using transformations from the PARTITION problem and 3-SATISFIABILITY, two of 

the “core” NP-complete problems.  Specifically, let there be a set of customers, each with a 

given level of demand for resources, and a set of servers, each with a given level of capacity, 

where each customer may be served by two or more of the servers.  The general problem of 

determining whether there is an assignment of customers to servers such that each customer’s 

demand may be satisfied by available resources is NP-complete. 

The impact on Cloudonomics is that even if resources are available to meet demand, correctly 

matching a set of demands with a set of resources may be too complex to solve in useful time. 
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1. Introduction 
 

There are a number of definitions of cloud computing.  At a high level, however, we can imagine 

a group of customers interacting with a set of servers on a globally ubiquitous basis over a 

network.  We use the term “server” as simplified shorthand for “data center,” “service center,” 

“service node,” “resource cluster,” and the like.  In some cases these customers may be 

individuals, using services such as search, web mail, or social networking services, or they may 

be viewed as enterprises, procuring services such as computing resources on a pay-per-use, 

on-demand basis. 

 

FIGURE 1: A Global Cloud Computing Environment 

 

To deliver services and resources on demand over a network requires solving numerous 

technological problems, including automated provisioning, dynamic virtual server migration, 

network security, and so forth.  However, the problem we focus on in this paper is a deceptively 

simple one: matching demand for resources arising from customers with resource capacity 

available at the servers.  We can create a simple model that looks like this, showing that each 

customer has some level of demand   , and each server has some level of resources     
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FIGURE 2: Cloud Computing with Quantified Demand and Resources 

 

Also, we may want to address the fact that not all servers may be available to all customers, 

due to reasons such as network latency, commercial agreements, or security.  We can indicate 

that a customer may be served by a server using a directed edge, as shown below. 
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FIGURE 3: Demand, Resources, and Connectivity 

Finally, we may abstract the problem as a bipartite graph of servers    and customers   , with 

resource requirements or demand    and resource availability   , as shown: 
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FIGURE 4: A Cloud Computing Graph with Customers Connected To Servers 
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We can formalize these notions as follows: 

Customers and Resource Demand:  Let   be a finite set of   customers, i.e.,   

               Let  =             be a set of   finite positive demands, where each 

customer    has demand   .  Elsewhere2, I have treated each customer’s demand as a function 

of time, e.g.,              etc., but here we will just treat each demand    as a constant, which 

we can interpret as non-varying demand or an instantaneous snapshot of variable demand. 

Generally, we can view each customer’s demand as being multi-dimensional, for example, 

customer    may need   processing cores,   gigabytes of memory, and    gigabytes of storage, 

but for the purposes of this paper we will treat the demand as one-dimensional. 

Servers and Resource Capacity: Demand is served by   distributed servers               .  

Let                be   finite positive resources, where each server    has a quantity of 

resources   .  As with demand, generally speaking, we could consider the quantity of resources 

as varying over time, e.g.,              etc., and being multi-dimensional.  However, here we will 

treat the resources as constant and one-dimensional. 

In this paper, we will assume that demand from any customer must either be served in its 

entirety by a specific server, or not at all.  This is a reasonable assumption, as applications often 

require a closely coupled set of components that must be physically co-located due to 

performance reasons. 

We would like to understand whether there are sufficient resources to service the demand.  If all 

the customers and servers3 are in a single location, e.g., a single data center, then this problem 

is easy to solve.  We just need to know whether    
 
       

 
   , that is, whether the total 

quantity of demand is less than or equal to the total quantity of resources 

And, if latency were not an issue and bandwidth were free, then even if customers and servers 

were in widely scattered locations, we would be fine with the same constraint. 

However, in the case of cloud computing, we can assume that location does matter.  To a 

customer, a cloud computing service or resources appear to be ubiquitous and thus location-

independent: after all, a service that could only be accessed from, say, 1234 Main Street in 

Topeka would not typically be considered “cloud computing.”  However, this is because behind 

the scenes there is sufficient available capacity “nearby” enough to meet latency constraints at a 

manageable level of cost.  And, there may be additional constraints whereby not all servers will 

be suitable for all customers, such as country privacy compliance, secure subnetworks, or other 

constraints.  This implies that servers and customers are less than fully connected. 

Consequently, we consider   and   not just as sets, but as members of a bipartite acyclic 

directed graph          ,      , such that           |          .  In other words, 

                                                           
2
 Joe Weinman, “Time is Money: The Value of ‘On-Demand’,” 

http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf 
3
 We use the terms “customers” and “servers” because “client-server” has other connotations. 



Cloud Computing is NP-Complete 

 

© 2011 Joe Weinman.  All Rights Reserved. Page 6 
 

every customer has one or more, but not necessarily all, servers with resources that can 

potentially service its demand. 

If for each customer there is exactly only one potential server, i.e., the conditions are as 

described above and        , then the problem is again easy to solve, since customers and 

servers partition themselves into disjoint subgraphs        ,    and we merely need to meet the 

condition that for each such subset               , given that     . 

Such a circumstance historically occurred in a traditional enterprise glass house data center 

environment where each employee’s terminal could only access services or resources within a 

nearby corporate data center, rather than say, a remote data center, a public cloud or a different 

enterprise’s data center.  In such a case, customers and servers partition themselves into 

multiple “star” clusters, with a server at the center of the star and customers at the points of the 

star. 

Also, if there is more than sufficient capacity at each center to handle workloads, then any 

assignment of customers to resources is likely to work.  However, such ubiquitous excess 

capacity is economically inefficient. 

The problem becomes interesting, and surprisingly complex, when each customer can access 

resources at two or more servers, and there is sufficient, but not excessive, aggregate capacity.  

As we will show, this problem is NP-complete, that is, unlikely to be solvable in an amount of 

time that is a polynomial function of   and  .  However, a potential solution generated at 

random may be verified in polynomial time, and this problem may be “transformed” or “reduced” 

into a set of other computationally complex equivalent problems that have been extensively 

studied, in the same way that the problem of “getting to work” may be reduced to the problem of 

“remembering where you left the car keys.” 

The classic text in the field of computational complexity is Computers and Intractability, 

authored by Michael R. Garey and David S. Johnson4, then members of the technical staff at 

the Mathematics Research Center of Bell Labs.  We will refer to this book throughout this paper. 

The canonical NP-complete problem is SATISFIABILITY, wherein it is desired to be known 

whether there exists at least one assignment of      or       to each variable in a set of 

Boolean variables such that a Boolean expression—which may be structured as the conjunction 

(“and”-ing) of a set of disjunctive (“or”-ing) clauses—can be satisfied, i.e., can be made to 

equate to     .  For example, the expression “(  or  ) and (not   or  )” can be satisfied in 

several ways, including by setting   to      and   to      .  While this was easy to solve, the 

general problem, when each clause has three or more Boolean variables, is NP-complete. 

In a similar vein, the CLOUD COMPUTING5 demand satisfiability problem may be expressed as 

the problem of whether there exists at least one assignment of customers to servers such that 

                                                           
4
 Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 

W. H. Freeman and Co., San Francisco, 1979. 
5
 We use “CLOUD COMPUTING” to refer to the abstract problem, and “Cloud Computing” to refer to the industry. 
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the aggregate demand from each customer assigned to a server can be satisfied, i.e., can be 

resourced, by the capacity at that server. 

Let customers                have demand  =             respectively, and let servers 

               have resources              } respectively.  Let           be a bipartitite 

graph where an edge           signifies that some or all of capacity    may be used to serve 

demand   . 

With this in mind, we can state the CLOUD COMPUTING problem as deciding whether there is 

an assignment    , that is, a subset of the set of edges  , where        such that 

1) Given any customer    there exists exactly one server    such that the edge          . 

 

2) The sum of the demand   
  arising from the customers served by server    is less than 

or equal to its capacity, i.e.,          we have      
                     

In the example instance we have been using, one such assignment is shown below. 
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Figure 5: An Assignment of Customers to Servers Satisfying Demand 
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2. The PARTITION Problem 
 

Garey and Johnson define the PARTITION problem, originally listed in Karp6, as this: given a 

finite set   and a “size,” or “weight”7      associated with each element of  , i.e.,         for 

each      is there a subset      such that                        ? 

We can think of    and      as a partition of   into two disjoint sets    and   , where    

     and        .  For example, if the weights of the elements of   are of sizes 

            and  , then   may be partitioned into    and    such that the weights of the 

elements of    are     and    and the weights of the elements of    are        and   since then  

                .  These kinds of problems show up often in the real world, for 

example, how can we choose players for two teams so that they have “equal” talent and thus 

make the game interesting, or how can we divide furniture among two moving vans so that 

neither exceeds highway weight restrictions. 

Note that while the “elements” of   are unique, and thus   is a set, the weights don’t need to be.  

However, if there are two elements with the same size, say,  , we can assign one of the 

elements to the first set and the other to the second one and we have simplified the problem. 

Garey and Johnson refer to PARTITION as one of the 6 “basic core” NP-complete problems, 

together with Boolean 3-SATISFIABILITY, 3-DIMENSIONAL MATCHING, VERTEX COVER, 

CLIQUE, and HAMILTONIAN CIRCUIT.  We will show that an instance of the PARTITION 

problem can be transformed in polynomial time to an instance of the CLOUD COMPUTING 

problem. 

Proposition 1: PARTITION is NP-complete. 

Proof: See Garey and Johnson, pp. 60-62, for the proof, which is based on a 

transformation from 3-DIMENSIONAL MATCHING.  

3. CLOUD COMPUTING Demand Satisfiability is NP-Complete 
 

The proof is a formalization of the insight that the CLOUD COMPUTING problem is equivalent 

to the PARTITION problem.  Using the example of    and     above, we can think of that 

instance of PARTITION as corresponding to the following CLOUD COMPUTING graph: 

                                                           
6
 Richard M. Karp, “Reducibility Among Combinatorial Problems,” 1972, at 

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf 
7
 We slightly change notation to use weight      rather than size      to prevent confusion with servers    in the 

present exposition. 
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Figure 6: A Transformation of an Instance of PARTITION to CLOUD COMPUTING 

And an assignment   which satisfies this instance is 
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Figure 7: A Solution to an Instance of PARTITION via CLOUD COMPUTING 
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For a formal proof that CLOUD COMPUTING is NP-complete, we need to show that 

1) CLOUD COMPUTING is     

 

2) There is a transformation of any instance of a known NP-complete problem, in this case, 

PARTITION, into an instance of CLOUD COMPUTING that is satisfiable if and only if 

there is a solution to the original instance of PARTITION 

 

3) This transformation from PARTITION to CLOUD COMPUTING can be done in 

polynomial time 

We now show this. 

Proposition 2: CLOUD COMPUTING is NP-complete. 

Proof: Clearly, CLOUD COMPUTING is in NP.  If we guess a solution to the problem, we 

can validate in time that is a polynomial function of   and   that the sum of each of the 

customer demands served by each server is within its quantity of resources, i.e., that 

  
            

We now transform PARTITION into CLOUD COMPUTING.  Let the instance of PARTITION 

be a finite set               and a weight           associated with each        

   . We want to know if there is a partition of   into two disjoint subsets        , where 

        and        , such that           
          

 

We construct a CLOUD COMPUTING instance             as follows.  Let   comprise 

  customers           , and let   comprise the corresponding demands           , 

where each    is set to      .  Let   comprise two servers,    and   .  Let       
 

 
          Finally, let                                                        . 

It is clear that such a transformation can be performed in polynomial time, proportional to   

to construct   and  , proportional to a constant to construct   and proportional to   to 

determine the values of    and thus   ,  and proportional to     to construct  . 

Finally, we note that an instance of CLOUD COMPUTING so constructed has an 

assignment that satisfies the demand if and only if the corresponding PARTITION problem 

has a solution.  If there is a solution of PARTITION, where      , then we let           but 

           .  Since the sum of the weights        
 

 
   

 
        

 we know that there is 

sufficient capacity    at server    to handle the demand   
 , and vice versa, and the same 

holds for capacity    at server    to handle the demand   
 .  The converse is also true, since 

if there is an assignment that satisfies the resource constraints at both    and   , and since 

the demand is indivisible, we have also found a suitable solution to the original PARTITION 

problem.   
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4. 3-SATISFIABILITY 
 

It will be noted that in the proof above, the topology, i.e., connectivity, of the Cloud Computing 

graph did not enter into the complexity of the solution in a major way.  In a way, this is very 

powerful, as it shows that there is a fundamentally challenging problem at the heart of CLOUD 

COMPUTING.  However, it is “unsatisfying” (no pun intended) in a way, as real-world 

considerations of proximity and latency really weren’t used that would constrain connections 

and thereby potentially define a less than fully connected graph.  Also, there are what one might 

term “philosophical” issues with the use of PARTITION, as Garey and Johnson discuss on pp. 

90-92 in a discussion regarding “strong” NP-completeness, in that part of the difficulty in solving 

PARTITION problems is that very large input numbers may be used, and one may need to 

consider how efficiently those numbers may be encoded in determining the complexity of the 

problem.  In the construction of the prior proof, all   customers were connected to all (i.e., both) 

servers.  In a second proof in the next section, the actual topology of the graph plays a major 

role in encoding the logic of the underlying complexity.  There are “truth-setting” components, 

“satisfaction-testing” components, each with local behavior, and “communications links” that 

create a global topology mirroring some of the trade-offs found in the real world.  For example, if 

one runs a large job at a computing center that is nearby, it may then displace another job to a 

different location, which may then create a domino effect of sorts. 

We first refresh the reader’s memory regarding the “mother” of all NP-complete problems, 3-

SATISFIABILITY: 

Let               be a set of Boolean disjunctive clauses on a finite set                of 

Boolean variables, such that |  |=3 for           is satisfiable if there is an assignment 

               such that each    is satisfied, i.e., has at least one term that is     . 

Proposition 3: 3-SATISFIABILITY is NP-complete. 

Proof: See Garey and Johnson, pp. 48-50, for a proof via a transformation from 

SATISFIABILITY.  

 

5. CLOUD COMPUTING Demand Satisfiability is NP-Complete, 

Redux 
 

We again show that CLOUD COMPUTING is NP-complete, this time via a transformation from 

3-SATISFIABILITY.  This proof primarily uses truth-setting components and satisfaction-testing 

components, and is conceptually related to the proof of the NP-completeness of the VERTEX 

COVER problem described in Garey and Johnson. 

We use the example below to help illustrate the construction. 
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Figure 8: A Transformation of an Instance of 3-SATISFIABILITY to CLOUD COMPUTING 

 

This example CLOUD COMPUTING instance is a transformation from an instance of 3-

SATISFIABILITY corresponding to four Boolean variables                 and   

                                                  or equivalently, 

                                                      . 

As can be seen, on the top row are “truth-setting” components, e.g. the cluster            .  On 

the bottom row are “satisfaction-testing” components, e.g., the cluster                

The demand      from customer    can either be met by server    or server    .  However, 

once that demand is met, whichever server has served it is now out of resources. The remaining 

server, however, has enough resources to serve as many customers on the bottom row as it is 

connected to.  For example, if demand from    is met by   , then    cannot also serve   , 

however,    will still be able to meet the demand from   .  Conversely, if demand from    is met 

by   , then    cannot also serve   .  However,     will have sufficient capacity to meet the 

demand from   . 

Turning to the satisfaction-testing components, consider the cluster               on the lower 

left.  Server    has resources     .  Consequently, it has sufficient capacity to service 

demands      arising from any zero, one, or two—but not all three—of   ,   , and   .  

Therefore, for demands   ,   , and     at least one must, but potentially two or three can get 

served from one of the servers in the truth-setting row.  The equivalence with 3-
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SATISFIABILITY is clear.  At least one Boolean term in each clause must be served via the 

truth-setting servers, and as many as three may be.  However, the truth-setting components are 

“forced” to make a decision as to a single value—     or      —for each Boolean variable. 

There may be zero, one or more assignments that satisfy a Boolean expression.  In this 

example, one such assignment is                           and         , or, 

graphically: 
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Figure 9: A Solution to an Instance of 3-SATISFIABILITY via CLOUD COMPUTING 

Note that demand from switches    to    is resourced by the “opposite” truth value, e.g., in the 

assignment shown in Figure 9,    being resourced by    signifies that    is set to     , as any 

literals in the clauses below may be now easily served by   . 

With this example in mind, we now turn to a second proof. 

Proposition 4: CLOUD COMPUTING is NP-complete. 

Proof: As in the proof of Proposition 1, CLOUD COMPUTING is clearly in NP.  Given a 

non-deterministic guess as to a solution, we can verify it in polynomial time.  We now 

show a transformation from 3-SATISFIABILITY.   

Let               be a set of Boolean disjunctive clauses on a finite set   

             of Boolean variables, such that |      for         Construct an 

instance             of CLOUD COMPUTING as follows: 

1) Create   truth-setting switches         , with demand        
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2) Create    truth selections           , each with resources        

 

3) Create an edge from each          to     

 

4) Create an edge from each          to       

 

5) Create    clause elements                 each with demand      

 

6) Create   clause gap-fillers                 , each with resources      

 

7) Create an edge from each clause element         to clause gap-filler             

     

 

8) Create an edge from each clause element         to clause gap-filler             

     

 

9) Create an edge from each clause element         to clause gap-filler             

     

 

10) For the 1st, 2nd, and 3rd term in each clause in  , do as follows: if the  th term in 

clause    is   , create an edge from             to       

 

11) For the 1st, 2nd, and 3rd term in each clause in  , also do as follows: if the  th term in 

clause    is    , create an edge from             to     

This is a somewhat tedious way of describing the construction illustrated in the example.  

We note that this transformation may be concluded in time that is a polynomial function 

of   and  .  Finally, we note that per the discussion and the construction there is an 

assignment to   that satisfies   if and only if there is a     satisfying              

To see this, we note that due to the fact that demand    from the switches         , 

always is at a level of demand       .  Since for each switch         , there is 

only the ability to have demand served in total either by selections     or      , each also 

with resources       , the truth-setting cluster follows the rule that exactly one and 

only one server per cluster will have resources available for use by the satisfaction-

testing components, and because     resources are made available, even if every 

cluster had every term set to be resourced by that selection, it would have sufficient 

resources, since there are at most   clauses with at most   terms. 

As an aside, this is where     arises in the construction.  In fact, if we restrict each 

clause to at most one occurrence of a term, then we could set demands and resources 

in the truth-setting components to just  , or even create a custom number of resources 

equal to the maximum number of occurrences of either   or    in the Boolean expression. 
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It is also clear that since each satisfaction-testing component has three customers each 

with a demand for   resource, but a “local” server only with   resources, at least one 

customer in each satisfaction-testing component must “look elsewhere” beyond the 

satisfaction-testing component for a resource to be served.  Consequently, at least one 

customer (i.e., variable) in each clause must be “True.” 

Conversely, from the construction, it is clear that if there is a solution to the instance of 

3-SATISFIABILITY, there is a corresponding solution to the instance of CLOUD 

COMPUTING.  Given a truth assignment of      or       to variable   , we set each 

truth-setting component accordingly so that the “switch” customer gets its resources 

from the selection customer corresponding to    .  This leaves sufficient resources in the 

selection labeled with the same truth value as   .  Since there is a satisfying assignment 

to the instance of 3-SATISFIABILITY, this means that each satisfaction-testing 

component has at least one term that is satisfied, thus can find at least   resource from 

the truth-setting layer.  Therefore, there are at most   resources needed by the 

satisfaction-testing component, which can be satisfied by the “gap-filling” server.  

6. Discussion 
 

This paper shows that computationally complex problems can arise under simple architectures 

such as geographically dispersed resources accessed by geographically dispersed customers. 

In the real world, there is usually likely to be sufficient capacity that most or all customers can be 

served most or all of the time.  However, as latency constraints cause demand to need to be 

fulfilled by “nearby” servers, and user experience or business requirements reduce the ability of 

those applications to be deferred to whenever resources may become available, this illustrates 

the challenge of maintaining a cost-effective, minimal set of resources and routing (assigning) 

customers to those resources for highly interactive workloads.  Moreover, in the real world, such 

a problem must be solved continuously, as servers become available or go off-line, and 

customer demand levels shift. 

Perhaps most interestingly, this brief analysis shows that even under simple assumptions 

regarding demand and resources, computationally complex challenges can arise.  My prior 

papers in Cloudonomics have looked at issues such as the relative cost of on-demand 

resources as well as the timeliness of resource provisioning and de-allocation.  This paper 

shows that, at least theoretically, the complexity of matching demand to resources in a 

distributed, efficient environment can be an issue as well. 

 

 


